m-dimensional lattice sums of generalized hypergeometric functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 336049
(http://iopscience.iop.org/0305-4470/33/34/310)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:31

Please note that terms and conditions apply.

m-dimensional lattice sums of generalized hypergeometric functions

Allen R Miller
1616 Eighteenth Street NW, Washington, DC 20009, USA

Received 30 March 2000

Abstract

Representations and convergence criteria for infinite m-dimensional lattice sums of generalized hypergeometric functions ${ }_{p} F_{p+1}$ are deduced by appealing to the principle of mathematical induction. In particular, we show that such a lattice sum may be expressed essentially as a finite sum of Mellin transforms of products of Bessel functions of order $\frac{1}{2}(m-2)$ and the functions ${ }_{p} F_{p+1}$ in the lattice sum. In addition, a direct derivation for the three-dimensional case is provided. Moreover, we construct a countably infinite class of null-functions on increasingly larger open intervals which are parametrically independent of the functions ${ }_{p} F_{p+1}$ generating them.

1. Introduction

Let $\boldsymbol{q}(m)$ denote the vector whose m components $(m \geqslant 1)$ range over all integers (positive, negative and zero) which are usually called Z. The length of the vector $\boldsymbol{q}(m)$, i.e. the square root of the sum of the squares of its components, is denoted by q. We shall consider m dimensional lattice sums of generalized hypergeometric functions ${ }_{p} F_{p+1}(p \geqslant 0)$ defined for $x>0$ by

$$
\begin{equation*}
W(\boldsymbol{\alpha} ; x) \equiv \sum_{q(m)} \exp (2 \pi \mathrm{i} \boldsymbol{\alpha} \cdot \boldsymbol{q})_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} q^{2}\right] \tag{1.1a}
\end{equation*}
$$

where the components of the constant vector $\boldsymbol{\alpha}(m)$ are arbitrary real numbers and $\boldsymbol{\alpha} \cdot \boldsymbol{q}$ is the vector dot product. Clearly, since in equation $(1.1 a), \boldsymbol{q}$ may be replaced by $-\boldsymbol{q}$, we may also write

$$
\begin{equation*}
W(\boldsymbol{\alpha} ; x)=\sum_{\boldsymbol{q}(m)} \cos (2 \pi \boldsymbol{\alpha} \cdot \boldsymbol{q})_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} q^{2}\right] . \tag{1.1b}
\end{equation*}
$$

For conciseness in what follows we define

$$
\begin{equation*}
\Delta \equiv \sum_{k=1}^{p+1} b_{k}-\sum_{k=1}^{p} a_{k} . \tag{1.2}
\end{equation*}
$$

Ordinary convergence of the series defining $W(\boldsymbol{\alpha} ; x)$ will be discussed in section 2 , where we shall also show that $W(\boldsymbol{\alpha} ; x)$ converges absolutely provided that

$$
\begin{equation*}
\operatorname{Re}\left(a_{k}\right)>\frac{1}{2} m \quad \operatorname{Re}(\Delta)>m+\frac{1}{2} \tag{1.3}
\end{equation*}
$$

where Δ is given by equation (1.2) and $1 \leqslant k \leqslant p$. When $p=0$, the penultimate inequality is superfluous and $\operatorname{Re}\left(b_{1}\right)>m+\frac{1}{2}$.

Since specializations of the generalized hypergeometric function ${ }_{p} F_{p+1}$ are proportional to, for example, trigonometric functions, Bessel functions of the first kind, Lommel, Struve,
and associated Bessel functions, the m-dimensional Fourier series $W(\boldsymbol{\alpha} ; x)$ is of a very general nature. Moreover, lattice sums of the type defined in equations (1.1) appear frequently in the study of finite-size effects in systems undergoing phase transitions. Thus, a knowledge of their analytical behaviour in different domains of the variable x is important for understanding the physical behaviour of the given finite-sized system in various temperature domains. See the work of Allen and Pathria [1,2] for further details and references.

In [3] we derived closed form representations for $W(\boldsymbol{\alpha} ; x)$ in the one- and two-dimensional cases which are given respectively below for $x>0$ and real numbers α and β :

$$
\begin{align*}
& \sum_{\ell \in Z} \mathrm{e}^{2 \pi \mathrm{i} \alpha \ell}{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} \ell^{2}\right]=\frac{\sqrt{\pi}}{x} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \frac{\Gamma\left(\left(a_{p}\right)-\frac{1}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{1}{2}\right)} \\
& \times \sum_{\ell \in Z}{ }_{p+1}^{(\alpha+\ell)^{2} \leqslant x^{2} / \pi^{2}} F_{p}\left[\frac{3}{2}-\left(b_{p+1}\right) ; \frac{\pi^{2}}{\frac{3}{2}-\left(a_{p}\right) ; x^{2}}(\alpha+\ell)^{2}\right] \\
&+\frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{1}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{\pi^{2}}{x^{2}}\right)^{a_{k}} \\
& \times \sum_{\ell \in Z}^{(\alpha+\ell)^{2} \leqslant x^{2} / \pi^{2}}\left((\alpha+\ell)^{2}\right)^{a_{k}-\frac{1}{2}} p+1 F_{p}\left[\begin{array}{r}
1+a_{k}-\left(b_{p+1}\right) ; \\
\frac{1}{2}+a_{k}, 1+a_{k}-\left(a_{p}\right)^{*} ;
\end{array} x^{2}(\alpha+\ell)^{2}\right] \tag{1.4}
\end{align*}
$$

$$
\begin{align*}
& \sum_{\ell \in Z} \sum_{n \in Z} \mathrm{e}^{2 \pi \mathrm{i}(\alpha \ell+\beta n)}{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2}\left(\ell^{2}+n^{2}\right)\right]=\frac{\pi}{x^{2}} \frac{\prod_{k=1}^{p+1}\left(b_{k}-1\right)}{\prod_{k=1}^{p}\left(a_{k}-1\right)} \\
& \times \sum_{\ell \in Z} \sum_{n \in Z}^{(\alpha+\ell)^{2}+(\beta+n)^{2} \leqslant x^{2} / \pi^{2}}{ }_{p+1} F_{p}\left[\begin{array}{c}
2-\left(b_{p+1}\right) ; \\
2-\left(a_{p}\right) ;
\end{array} \pi^{2}\left((\alpha+\ell)^{2}+(\beta+n)^{2}\right)\right] \\
&+\frac{1}{\pi} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \sum_{k=1}^{p} \frac{\Gamma\left(1-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{\pi^{2}}{x^{2}}\right)^{a_{k}} \\
& \times \sum_{\ell \in Z}^{(\alpha+\ell)^{2}+(\beta+n)^{2} \leqslant x^{2} / \pi^{2}} \sum_{n \in Z}\left((\alpha+\ell)^{2}+(\beta+n)^{2}\right)^{a_{k}-1} \\
&\left.\times{ }_{p+1} F_{p}\left[\begin{array}{l}
1+a_{k}-\left(b_{p+1}\right) ; \pi^{2} \\
a_{k}, 1+a_{k}-\left(a_{p}\right) * ; \\
x^{2} \\
\\
\end{array}(\alpha+\ell)^{2}+(\beta+n)^{2}\right)\right] \tag{1.5}
\end{align*}
$$

where for conciseness $\Gamma\left(\left(a_{p}\right)\right) \equiv \Gamma\left(a_{1}\right), \ldots, \Gamma\left(a_{p}\right)$ and
$\Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right) \equiv \Gamma\left(a_{1}-a_{k}\right), \ldots, \Gamma\left(a_{k-1}-a_{k}\right) \Gamma\left(a_{k+1}-a_{k}\right), \ldots, \Gamma\left(a_{p}-a_{k}\right)$
both of which reduce to unity when $p=0$.
Criteria for absolute convergence of the doubly infinite series in equation (1.4) and the doubly infinite double series in equation (1.5) are determined by setting respectively $m=1,2$ in the conditional inequalities (1.3). Several authors have deduced various specializations of equations (1.4) and (1.5) by employing different methods. For further details and references see [3].

Now defining the vector $\boldsymbol{\xi}(m) \equiv \boldsymbol{\alpha}(m)+\boldsymbol{q}(m)$, it is easy to see that the one- and twodimensional cases given respectively by equations (1.4) and (1.5) may be written in a unified way as
$W(\boldsymbol{\alpha} ; x)=\frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)}\left\{\left(\frac{\sqrt{\pi}}{x}\right)^{m} \frac{\Gamma\left(\left(a_{p}\right)-\frac{m}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{m}{2}\right)}\right.$

$$
\begin{align*}
& \times \sum_{q(m)}^{\xi^{2} \leqslant x^{2} / \pi^{2}}{ }_{p+1} F_{p}\left[\begin{array}{cc}
\frac{m+2}{2}-\left(b_{p+1}\right) ; & \pi^{2} \xi^{2} \\
\frac{m+2}{2}-\left(a_{p}\right) ; & x^{2}
\end{array}\right] \\
& +\left(\frac{1}{\sqrt{\pi}}\right)^{m} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{m}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{\pi^{2}}{x^{2}}\right)^{a_{k}} \\
& \left.\times \sum_{\boldsymbol{q}(m)}^{\xi^{2} \leqslant x^{2} / \pi^{2}}\left(\xi^{2}\right)^{a_{k}-\frac{m}{2}}{ }_{p+1} F_{p}\left[\begin{array}{r}
\frac{2-m}{2}+a_{k}, 1+a_{k}-\left(a_{p}\right) * ;
\end{array} \frac{\pi^{2} \xi^{2}}{x^{2}}\right]\right\} \tag{1.6}
\end{align*}
$$

where for absolute convergence of $W(\boldsymbol{\alpha} ; x)$ the conditional inequalities (1.3) hold true. Furthermore, by using a representation for the Mellin transform of products of Bessel functions and generalized hypergeometric functions ${ }_{p} F_{p+1}$ (see [4, equations (4.4), (5.1)]), equation (1.6) may be written equivalently in the following elegant and useful form:
$W(\boldsymbol{\alpha} ; x)=\frac{2 \pi^{-\frac{m}{2}}}{\Gamma\left(\frac{m}{2}\right)} \sum_{q(m)}^{\xi^{2} \leqslant x^{2} / \pi^{2}} \int_{0}^{\infty} t^{m-1}{ }_{0} F_{1}\left[\begin{array}{c}-; \\ \frac{m}{2} ;\end{array}-\xi^{2} t^{2}\right]{ }_{p} F_{p+1}\left[\begin{array}{c}\left(a_{p}\right) ; \\ \left(b_{p+1}\right) ;\end{array}-\frac{x^{2} t^{2}}{\pi^{2}}\right] \mathrm{d} t(1.7 a)$
where for convergence of the integral when $\xi^{2}<x^{2} / \pi^{2}$

$$
\begin{equation*}
\operatorname{Re}\left(a_{k}\right)>\frac{1}{4}(m-1) \quad \operatorname{Re}(\Delta)>\frac{1}{2} m \tag{1.7b}
\end{equation*}
$$

and when $\xi^{2} \leqslant x^{2} / \pi^{2}$

$$
\begin{equation*}
\operatorname{Re}\left(a_{k}\right)>\frac{1}{4}(m-1) \quad \operatorname{Re}(\Delta)>\frac{1}{2} m+1 \tag{1.7c}
\end{equation*}
$$

where Δ is given by equation (1.2) and $1 \leqslant k \leqslant p$.
Although in section 4 we shall show by induction that equations (1.7) (and therefore equation (1.6) also) are valid for all dimensions $m \geqslant 1$, we give in section 3 a direct derivation of equation (1.6) for the three-dimensional case. Not only is this derivation interesting in its own right, but it should serve to intimate a direct proof in the m-dimensional case. Assuming therefore that equations (1.6) and (1.7) are valid for m-dimensions, we shall discuss convergence of the lattice sum $W(\boldsymbol{\alpha} ; x)$ in the next section.

In equation (1.6) letting $p=0, b_{1}=1+v$, noting that

$$
{ }_{0} F_{1}\left[-; 1+v ;-z^{2}\right]=\Gamma(1+v) J_{v}(2 z) / z^{v}
$$

and using equation (1.1b) we obtain immediately a representation for m-dimensional Schlömilch series:
$\sum_{\boldsymbol{q}(m)} \cos (2 \pi \boldsymbol{\alpha} \cdot \boldsymbol{q}) \frac{J_{\nu}(2 x q)}{(x q)^{\nu}}=\frac{\pi^{-\frac{m}{2}}}{\Gamma\left(\frac{2-m}{2}+\nu\right)}\left(\frac{\pi^{2}}{x^{2}}\right)^{\nu} \sum_{\boldsymbol{q}(m)}^{\xi^{2} \leqslant x^{2} / \pi^{2}}\left(\frac{x^{2}}{\pi^{2}}-\xi^{2}\right)^{\nu-\frac{m}{2}}$
where (from lemma 1 below) $\operatorname{Re} \nu>\frac{m}{2}-1$ if $\xi^{2}<x^{2} / \pi^{2}$ or $\operatorname{Re} \nu>\frac{m}{2}$ if $\xi^{2} \leqslant x^{2} / \pi^{2}$. Essentially this is the same result derived previously by induction in [5, equation (2.3)], where the specialized components of the vector $\boldsymbol{\alpha}(m)$ were $\frac{1}{2}$. When $p>0$, equation (1.6) does not appear suitable for induction because its second right-hand term causes seemingly intractable problems. However, as we shall see in section 4 the equivalent form equation (1.7a) is amenable to the inductive method used previously in [5] to obtain equation (1.8). Furthermore, in [5] we showed how the particular case of equation (1.8) with $\boldsymbol{\alpha}(m)=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)$ yields a countably infinite number of representations for null-functions on increasingly larger open intervals $0<x<\pi \alpha$. Thus in section 5 we shall also be able to discuss null-functions in the more general settings of equations (1.6) and (1.7).

2. Convergence of the sum $W(\alpha ; x)$

We shall need the asymptotic result (see [4, equation (2.2a)]) for the generalized hypergeometric function

$$
\begin{array}{r}
{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-z^{2}\right]=\left\{\sum_{k=1}^{p} A_{k}\left(\frac{1}{z^{2}}\right)^{a_{k}}+A_{p+1}\left(\frac{1}{z^{2}}\right)^{\eta}\right. \\
\left.\times \cos \left[2 z-\pi \eta+\mathcal{O}\left(\frac{1}{z}\right)\right]\right\}\left[1+\mathcal{O}\left(\frac{1}{z^{2}}\right)\right] \tag{2.1a}
\end{array}
$$

where $|z| \rightarrow \infty,|\arg z|<\frac{1}{2} \pi$, the $A_{k}(1 \leqslant k \leqslant p+1)$ are constants dependent on the parameters of the generalized hypergeometric function, and

$$
\begin{equation*}
\eta \equiv \frac{1}{2}\left(\Delta-\frac{1}{2}\right) \tag{2.1b}
\end{equation*}
$$

where Δ is given by equation (1.2).
Now setting $z=x q(m)$ in equation (2.1a), multiplying both sides of the latter by $\exp (2 \pi \mathrm{i} \boldsymbol{\alpha}(m) \cdot \boldsymbol{q}(m))$, and for some sufficiently large integer $N>0$ summing the result over $q>N$, we have for $x>0$

$$
\begin{align*}
& \sum_{q>N} \exp (2 \pi \mathrm{i} \boldsymbol{\alpha} \cdot \boldsymbol{q})_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-q^{2} x^{2}\right] \\
&=\left\{\sum_{k=1}^{p} \frac{A_{k}}{x^{2 a_{k}}} \sum_{q>N} \frac{\exp (2 \pi \mathrm{i} \boldsymbol{\alpha} \cdot \boldsymbol{q})}{\left(q^{2}\right)^{a_{k}}}+\frac{1}{2} \frac{A_{p+1}}{x^{2 \eta}}\left(\mathrm{e}^{-\mathrm{i} \omega} \sum_{q>N} \frac{\exp [2 \mathrm{i}(\pi \boldsymbol{\alpha} \cdot \boldsymbol{q}+q x)]}{\left(q^{2}\right)^{\eta}}\right.\right. \\
&\left.\left.+\mathrm{e}^{\mathrm{i} \omega} \sum_{q>N} \frac{\exp [2 \mathrm{i}(\pi \boldsymbol{\alpha} \cdot \boldsymbol{q}-q x)]}{\left(q^{2}\right)^{\eta}}\right)\right\}\left[1+\mathcal{O}\left(\frac{1}{x^{2}}\right)\right] \tag{2.2a}
\end{align*}
$$

where $\omega \equiv \pi \eta-\mathcal{O}(1 / x)$ and η is given by equation (2.1b).
Since $\alpha(m)$ is a constant vector whose m components are arbitrary real numbers, we see without loss of generality that the convergence of $W(\alpha ; x)$ is determined by the convergence of the three q-summations in equation (2.2a). Clearly the third sum need not be considered separately so for conciseness, we name the first and second q-summations on the right-hand side of equation (2.2a) S and T respectively, where in the sum T values of $x \neq 0$ are real. Obviously, necessary conditions that S and T converge respectively are

$$
\begin{equation*}
\operatorname{Re}\left(a_{k}\right)>0(1 \leqslant k \leqslant p) \quad \operatorname{Re}(\Delta)>\frac{1}{2} \tag{2.2b}
\end{equation*}
$$

the latter of which follows from equation $(2.1 b)$, since $\operatorname{Re}(\eta)>0$.
When $m \leqslant 2$, the inequalities $\operatorname{Re}\left(a_{k}\right)>0(1 \leqslant k \leqslant p)$ guarantee the ordinary convergence of S provided that the components of $\alpha(2)$ are not members of Z (see [3, section 2]). Thus, it is reasonable to conjecture that generally in the m-dimensional case, the latter inequalities insure the ordinary convergence of S provided that the components of $\boldsymbol{\alpha}(m)$ are not integers. Furthermore, both S and T converge absolutely respectively provided that

$$
\begin{equation*}
\operatorname{Re}\left(a_{k}\right)>\frac{1}{2} m(1 \leqslant k \leqslant p) \quad \operatorname{Re}(\Delta)>m+\frac{1}{2} \tag{2.2c}
\end{equation*}
$$

(see [7, p 52]), the latter of which follows from equation (2.1b), since $\operatorname{Re}(\eta)>\frac{1}{2} m$. Thus, for $m \geqslant 1$ when one of the components of $\boldsymbol{\alpha}(m)$ is an integer, we shall require that $\operatorname{Re}\left(a_{k}\right)>\frac{1}{2} m$ $(1 \leqslant k \leqslant p)$ for convergence of the sum S.

Since, even in the two-dimensional case, the ordinary convergence of T (and thus $W(\boldsymbol{\alpha} ; x)$ also) is problematic (see [3, section 2] for further details and references), we shall follow the procedure employed in [3] by gleaning additional information (albeit heuristic in nature)
from the representation for $W(\boldsymbol{\alpha} ; x)$ given by equations (1.7). Thus, we conclude that necessary conditions for the ordinary convergence of $W(\boldsymbol{\alpha} ; x)$ are that either of the conditional inequalities $(1.7 b)$ or $(1.7 c)$ hold true. For dimensions $m>1$, the latter conditional inequalities are stronger than the inequalities $(2.2 b)$. Moreover, when $m>1$ for absolute convergence of $W(\boldsymbol{\alpha} ; x)$, since the inequalities $(2.2 c)$ are stronger than either of the inequalities (1.7b) or (1.7c), we shall require the former.

We now summarize in the following conjecture the latter remarks; note that in all cases we have used the strongest applicable inequalities.
Conjectural lemma 1. For $m \geqslant 1$ and $x>0$, the sum $W(\boldsymbol{\alpha}(m) ; x)$ converges under the conditions of each of the following four cases where $1 \leqslant k \leqslant p$ and Δ is given by equation (1.2):
(i) If none of the components of $\boldsymbol{\alpha}(m)$ is an integer and $\xi^{2}<x^{2} / \pi^{2}$, then

$$
\operatorname{Re}\left(a_{k}\right)>\frac{1}{4}(m-1) \quad \operatorname{Re}(\Delta)>\frac{1}{2} m
$$

(ii) If one of the components of $\boldsymbol{\alpha}(m)$ is an integer and $\xi^{2}<x^{2} / \pi^{2}$, then

$$
\operatorname{Re}\left(a_{k}\right)>\frac{1}{2} m \quad \operatorname{Re}(\Delta)>\frac{1}{2} m
$$

(iii) If none of the components of $\boldsymbol{\alpha}(m)$ is an integer and $\xi^{2} \leqslant x^{2} / \pi^{2}$, then

$$
\operatorname{Re}\left(a_{k}\right)>\frac{1}{4}(m-1) \quad \operatorname{Re}(\Delta)>\frac{1}{2} m+1
$$

(iv) If one of the components of $\boldsymbol{\alpha}(m)$ is an integer and $\xi^{2} \leqslant x^{2} / \pi^{2}$, then

$$
\operatorname{Re}\left(a_{k}\right)>\frac{1}{2} m \quad \operatorname{Re}(\Delta)>\frac{1}{2} m+1 .
$$

Furthermore, for $m \geqslant 1$ and $x>0$, the sum $W(\boldsymbol{\alpha}(m) ; x)$ converges absolutely provided that

$$
\operatorname{Re}\left(a_{k}\right)>\frac{1}{2} m \quad \operatorname{Re}(\Delta)>m+\frac{1}{2} .
$$

It should be emphasized that although lemma 1 is in part heuristic and based implicitly on the formal method used to obtain $W(\boldsymbol{\alpha} ; x)$ in section 4 , it is wholly true and provable for $m=1$ (see [3, lemma 1]); and for $m=2$ coincides with [3, lemma 2].

3. The three-dimensional case

In the three-dimensional case letting $\boldsymbol{\alpha}(3)=(\alpha, \beta, \gamma), \boldsymbol{q}(3)=(\ell, m, n)$ we write equation (1.1a) as
$W(\boldsymbol{\alpha}(3) ; x)=\sum_{\ell, m, n \in Z} \mathrm{e}^{2 \pi \mathrm{i} \alpha \ell} \mathrm{e}^{2 \pi \mathrm{i} \beta m} \mathrm{e}^{2 \pi \mathrm{i} \gamma n}{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-\left(\ell^{2}+m^{2}+n^{2}\right) x^{2}\right]$
where $x>0$. Note that here the second (dummy) summation index m should not be confused with the dimension $m=3$ of the sum W; and α is just the first component of $\alpha(3)$ and not the length of the vector.

We shall employ a form of the three-dimensional Poisson summation formula to obtain a closed-form representation for $W(\boldsymbol{\alpha}(3) ; x)$. To this end we shall have to evaluate the threedimensional Fourier transform \mathcal{F} of the generalized hypergeometric function ${ }_{p} F_{p+1}\left[-u^{2}\right]$, where $u=t(x, y, z), t>0$:

$$
\begin{align*}
\mathcal{F}\left\{{ } _ { p } F _ { p + 1 } \left[\left(a_{p}\right) ;\right.\right. & \left.\left.\left(b_{p+1}\right) ;-t^{2}\left(x^{2}+y^{2}+z^{2}\right)\right]\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} \xi x} \mathrm{e}^{\mathrm{i} \eta y} \mathrm{e}^{\mathrm{i} \omega z} \\
& \times{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2}\left(x^{2}+y^{2}+z^{2}\right)\right] \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
= & \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \mathrm{e}^{\mathrm{i} \rho \sin \phi(\xi \cos \theta+\eta \sin \theta)} \mathrm{e}^{\mathrm{i} \rho \omega \cos \phi} \\
& \times{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} \rho^{2}\right] \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi \tag{3.2}
\end{align*}
$$

which results from the spherical coordinate transformation

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

where $0 \leqslant \phi \leqslant \pi, 0 \leqslant \theta \leqslant 2 \pi$, and $\rho>0$.
Since

$$
\int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i} \rho \sin \phi(\xi \cos \theta+\eta \sin \theta)} \mathrm{d} \theta=2 \pi J_{0}\left(\rho \sin \phi \sqrt{\xi^{2}+\eta^{2}}\right)
$$

equation (3.2) reduces to

$$
\begin{gather*}
\mathcal{F}\left\{{ } _ { p } F _ { p + 1 } \left[\left(a_{p}\right) ;\right.\right. \\
\left.\left..\left(b_{p+1}\right) ;-t^{2}\left(x^{2}+y^{2}+z^{2}\right)\right]\right\}=2 \pi \int_{0}^{\infty} \rho_{p}^{2} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} \rho^{2}\right] \tag{3.3}\\
\times \int_{0}^{\pi} \sin \phi \cos (\omega \rho \cos \phi) J_{0}\left(\rho \sin \phi \sqrt{\xi^{2}+\eta^{2}}\right) \mathrm{d} \phi \mathrm{~d} \rho .
\end{gather*}
$$

Now making the transformation $x=\sin \phi$ in the latter inner integral, we may use the tabulated result in [6, vol 2 , section 2.12.21, equation (6)] or set $\mu=0, a=\frac{1}{2} \omega \rho, b=\frac{1}{2} \rho \sqrt{\xi^{2}+\eta^{2}}$ in equation (4.1) below to obtain

$$
\int_{0}^{\pi} \sin \phi \cos (\omega \rho \cos \phi) J_{0}\left(\rho \sin \phi \sqrt{\xi^{2}+\eta^{2}}\right) \mathrm{d} \phi=\frac{2 \sin \left(\rho \sqrt{\xi^{2}+\eta^{2}+\omega^{2}}\right)}{\rho \sqrt{\xi^{2}+\eta^{2}+\omega^{2}}}
$$

which when combined with the right-hand side of equation (3.3) gives for the three-dimensional Fourier transform \mathcal{F} of ${ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2}\left(x^{2}+y^{2}+z^{2}\right)\right]$ the result

$$
\frac{4 \pi}{\sqrt{\xi^{2}+\eta^{2}+\omega^{2}}} \int_{0}^{\infty} \rho \sin \left(\rho \sqrt{\xi^{2}+\eta^{2}+\omega^{2}}\right)_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} \rho^{2}\right] \mathrm{d} \rho .
$$

The latter infinite integral is seen to be a specialization of the Mellin transform of products of Bessel functions and generalized hypergeometric functions which has been used previously in connection with equation (1.7a). Thus, again employing [4, equations (4.4)] we see that for $t>0$
$\mathcal{F}\left\{{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2}\left(x^{2}+y^{2}+z^{2}\right)\right]\right\}=0 \quad 4 t^{2}<\xi^{2}+\eta^{2}+\omega^{2}$
and

$$
\left.\begin{array}{rl}
\mathcal{F}\left\{{ } _ { p } F _ { p + 1 } \left[\left(a_{p}\right) ;\right.\right. & \left.\left.\left(b_{p+1}\right) ;-t^{2}\left(x^{2}+y^{2}+z^{2}\right)\right]\right\} \\
= & \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)}\left(\frac{\Gamma\left(\left(a_{p}\right)-\frac{3}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{3}{2}\right)} \frac{\pi^{\frac{3}{2}}}{t^{3}} p+1 F_{p}\left[\begin{array}{r}
\frac{5}{2}-\left(b_{p+1}\right) ; \\
\frac{5}{2}-\left(a_{p}\right) ;
\end{array} \frac{\xi^{2}+\eta^{2}+\omega^{2}}{4 t^{2}}\right]\right. \\
& +\frac{8 \pi^{\frac{3}{2}}}{\left(\xi^{2}+\eta^{2}+\omega^{2}\right)^{3 / 2}} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{3}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{\xi^{2}+\eta^{2}+\omega^{2}}{4 t^{2}}\right)^{a_{k}} \\
& \left.\times{ }_{p+1} F_{p}\left[\begin{array}{r}
1+a_{k}-\left(b_{p+1}\right) ; \xi^{2}+\eta^{2}+\omega^{2} \\
a_{k}-\frac{1}{2}, 1+a_{k}-\left(a_{p}\right)^{*} ;
\end{array}\right]\right) 4 t^{2} \tag{3.4b}
\end{array}\right) 4 t^{2}>\xi^{2}+\eta^{2}+\omega^{2} .
$$

where for convergence of the Fourier transform

$$
\begin{equation*}
\operatorname{Re}\left(a_{k}\right)>\frac{1}{2} \quad \operatorname{Re}(\Delta)>\frac{3}{2} \tag{3.4c}
\end{equation*}
$$

where Δ is given by equation (1.2) and $1 \leqslant k \leqslant p$.

Inversion of the Fourier transform given by equations (3.4a) and (3.4b) yields the following integral representation for ${ }_{p} F_{p+1}\left[-t^{2}\left(x^{2}+y^{2}+z^{2}\right)\right]$:

$$
\left.\left.\begin{array}{rl}
{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\right. & \left.\left(b_{p+1}\right) ;-t^{2}\left(x^{2}+y^{2}+z^{2}\right)\right] \\
= & \frac{1}{(2 \pi)^{3}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)}\left(\frac{\Gamma\left(\left(a_{p}\right)-\frac{3}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{3}{2}\right)} \frac{\pi^{\frac{3}{2}}}{t^{3}} \iiint_{\Omega(t)} \mathrm{e}^{-\mathrm{i} x \xi} \mathrm{e}^{-\mathrm{i} y \eta} \mathrm{e}^{-\mathrm{i} z \omega}\right. \\
& \times{ }_{p+1} F_{p}\left[\frac{5}{2}-\left(b_{p+1}\right) ; \frac{\xi^{2}+\eta^{2}+\omega^{2}}{\frac{5}{2}-\left(a_{p}\right) ;} 4^{2}\right] \mathrm{d} \xi \mathrm{~d} \eta \mathrm{~d} \omega \\
& +8 \pi^{\frac{3}{2}} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{3}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{1}{4 t^{2}}\right)^{a_{k}} \\
& \times \iiint_{\Omega(t)} \mathrm{e}^{-\mathrm{i} x \xi} \mathrm{e}^{-\mathrm{i} y \eta} \mathrm{e}^{-\mathrm{i} z \omega}\left(\xi^{2}+\eta^{2}+\omega^{2}\right)^{a_{k}-\frac{3}{2}} \\
& \times{ }_{p+1} F_{p}\left[a_{k}-\frac{1}{2}, 1+a_{k}-\left(a_{p}\right)^{*} ;\right. \tag{3.5}\\
1+a_{k}-\left(b_{p+1}\right) ; \xi^{2}+\eta^{2}+\omega^{2} \\
4 t^{2}
\end{array}\right] \mathrm{~d} \xi \mathrm{~d} \eta \mathrm{~d} \omega\right)
$$

where $t>0$, the inequalities (3.4c) hold true, and the sphere of integration $\Omega(t)$ is given by $\xi^{2}+\eta^{2}+\omega^{2} \leqslant 4 t^{2}$.

Next, in equation (3.5) replacing the triple x, y, z respectively by ℓ, m, n, setting $t=x$, and inserting the result into equation (3.1) gives for $x>0$

$$
\begin{align*}
& W(\boldsymbol{\alpha}(3) ; x)= \frac{1}{(2 \pi)^{3}} \frac{\pi^{\frac{3}{2}}}{x^{3}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \frac{\Gamma\left(\left(a_{p}\right)-\frac{3}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{3}{2}\right)} \\
& \times \iiint_{\Omega(x)} \sum_{\ell \in Z} \mathrm{e}^{\mathrm{i}(2 \pi \alpha-\xi) \ell} \sum_{m \in Z} \mathrm{e}^{\mathrm{i}(2 \pi \beta-\eta) m} \sum_{n \in Z} \mathrm{e}^{\mathrm{i}(2 \pi \gamma-\omega) n} \\
& \times{ }_{p+1} F_{p}\left[\frac{5}{2}-\left(b_{p+1}\right) ; \xi^{2}+\eta^{2}+\omega^{2}\right] \mathrm{d} \xi \mathrm{~d} \eta \mathrm{~d} \omega \\
& \frac{5}{2}-\left(a_{p}\right) ; \frac{x^{2}}{} \\
&+\frac{8 \pi^{\frac{3}{2}}}{(2 \pi)^{3}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{3}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{1}{4 x^{2}}\right)^{a_{k}} \\
& \times \iiint_{\Omega(x)} \sum_{\ell \in Z} \mathrm{e}^{\mathrm{i}(2 \pi \alpha-\xi) \ell} \sum_{m \in Z} \mathrm{e}^{\mathrm{i}(2 \pi \beta-\eta) m} \sum_{n \in Z} \mathrm{e}^{\mathrm{i}(2 \pi \gamma-\omega) n}\left(\xi^{2}+\eta^{2}+\omega^{2}\right)^{a_{k}-\frac{3}{2}} \tag{3.6}\\
& \times{ }_{p+1} F_{p}\left[a_{k}-\frac{1}{2}, 1+a_{k}-\left(b_{p+1}\right) ; \xi^{2}+\frac{\eta^{2}+\omega^{2}}{4 x^{2}}\right] \mathrm{d} \xi \mathrm{~d} \eta \mathrm{~d} \omega
\end{align*}
$$

where the order of summations and integrations have been interchanged in both terms.
Now for real μ noting that

$$
\sum_{k \in Z} \mathrm{e}^{\mathrm{i} \mu k}=2 \pi \sum_{k \in Z} \delta(\mu-2 \pi k)
$$

(see [8, p 189, equation (17)]), where δ is the delta function (or functional), upon replacing μ respectively by $2 \pi \alpha-\xi, 2 \pi \beta-\eta, 2 \pi \gamma-\omega$ we see that equation (3.6) yields for $x>0$

$$
\begin{aligned}
W(\boldsymbol{\alpha}(3) ; x)= & \frac{\pi^{\frac{3}{2}}}{x^{3}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \frac{\Gamma\left(\left(a_{p}\right)-\frac{3}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{3}{2}\right)} \\
& \times \sum_{\ell, m, n \in Z} \iiint_{\Omega(x)}{ }_{p+1} F_{p}\left[\begin{array}{r}
\frac{5}{2}-\left(b_{p+1}\right) ; \\
\frac{5}{2}-\left(a_{p}\right) ;
\end{array} \frac{\xi^{2}+\eta^{2}+\omega^{2}}{4 x^{2}}\right] \\
& \times \delta(2 \pi \alpha-\xi-2 \pi \ell) \delta(2 \pi \beta-\eta-2 \pi m) \delta(2 \pi \gamma-\omega-2 \pi n) \mathrm{d} \xi \mathrm{~d} \eta \mathrm{~d} \omega
\end{aligned}
$$

$$
\begin{align*}
& +8 \pi^{\frac{3}{2}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{3}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{1}{4 x^{2}}\right)^{a_{k}} \\
& \times \sum_{\ell, m, n \in Z} \iiint_{\Omega(x)}\left(\xi^{2}+\eta^{2}+\omega^{2}\right)^{a_{k}-\frac{3}{2}} \\
& \times{ }_{p+1} F_{p}\left[\begin{array}{c}
1+a_{k}-\left(b_{p+1}\right) ; \\
a_{k}-\frac{1}{2}, 1+a_{k}-\left(a_{p}\right)^{*} ; \eta^{2}+\omega^{2} \\
4 x^{2}
\end{array}\right] \\
& \times \delta(2 \pi \alpha-\xi-2 \pi \ell) \delta(2 \pi \beta-\eta-2 \pi m) \delta(2 \pi \gamma-\omega-2 \pi n) \mathrm{d} \xi \mathrm{~d} \eta \mathrm{~d} \omega \tag{3.7}
\end{align*}
$$

where again we have interchanged the order of summations and integrations in both terms.
Finally, on performing the required formal term-by-term integrations with regard to the distributional properties of the delta function we deduce for $x>0$ and real numbers α, β, γ

$$
\begin{align*}
& \sum_{\ell, m, n \in Z} \mathrm{e}^{2 \pi \mathrm{i}(\alpha \ell+\beta m+\gamma n)}{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2}\left(\ell^{2}+m^{2}+n^{2}\right)\right] \\
&= \frac{\pi^{\frac{3}{2}}}{x^{3}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \frac{\Gamma\left(\left(a_{p}\right)-\frac{3}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{3}{2}\right)} \sum_{\ell, m, n \in Z}^{(\alpha+\ell)^{2}+(\beta+m)^{2}+(\gamma+n)^{2} \leqslant x^{2} / \pi^{2}} \\
& p^{p+1} F_{p}\left[\begin{array}{r}
\frac{5}{2}-\left(b_{p+1}\right) ; \pi^{2} \\
\frac{5}{2}-\left(a_{p}\right) ; x^{2} \\
x^{2} \\
\\
\\
\\
\quad+\frac{1}{\pi^{\frac{3}{2}}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{3}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{\pi^{2}}{x^{2}}\right)^{a_{k}} \\
\\
\\
\\
\end{array} \quad{ }^{(\alpha+\ell)^{2}+(\beta+m)^{2}+(\gamma+n)^{2} \leqslant x^{2} / \pi^{2}} \sum_{p+1} \sum_{p}\left[(\alpha+\ell)^{2}+(\beta+m)^{2}+(\gamma+n)^{2}\right)^{a_{k}-\frac{3}{2}}\right. \\
&\left.a_{k}-\frac{1}{2}, 1+a_{k}-\left(a_{p}\right)^{*} ; \frac{x^{2}}{x^{2}}\left((\alpha+\ell)^{2}+(\beta+m)^{2}+(\gamma+n)^{2}\right)\right]
\end{align*}
$$

where convergence may be determined from lemma 1 for dimension $m=3$. Thus, it is easy to see that we have verified equation (1.6) in the three-dimensional case where $\xi^{2}(3)=(\alpha+\ell)^{2}+(\beta+m)^{2}+(\gamma+n)^{2}$. In the next section we shall show by induction that equations (1.6) and (1.7) are in fact valid for all dimensions $m \geqslant 1$.

4. The inductive formal proof

In what follows we shall need to utilize

$$
\begin{gather*}
\int_{0}^{\pi / 2} \sin ^{2 \mu+1} \phi_{0} F_{1}\left[\begin{array}{r}
-; \\
\frac{1}{2} ;
\end{array}-a^{2} \cos ^{2} \phi\right]{ }_{0} F_{1}\left[\begin{array}{cc}
-; & \left.-b^{2} \sin ^{2} \phi\right] \mathrm{d} \phi \\
1+\mu ;
\end{array}\right. \\
=\frac{1}{2} \sqrt{\pi} \frac{\Gamma(1+\mu)}{\Gamma\left(\frac{3}{2}+\mu\right)}{ }^{2} F_{1}\left[\begin{array}{rc}
-; & -\left(a^{2}+b^{2}\right) \\
\frac{3}{2}+\mu ;
\end{array}\right. \tag{4.1}
\end{gather*}
$$

where $\operatorname{Re} \mu>-1$. This well known result ($\operatorname{cf}[6, \operatorname{vol} 2$, section 2.12.21, equation (5)]) is easily derived by writing each ${ }_{0} F_{1}$ as a hypergeometric sum, noting that the term-by-term integrations are proportional to beta functions, and then essentially employing the binomial theorem.

We shall also employ the addition theorem for generalized hypergeometric functions (see e.g. [6, vol 3, section 6.8.1, equation (19)])

$$
\begin{equation*}
{ }_{p} F_{q}\left[\left(a_{p}\right) ;\left(b_{q}\right) ; x+y\right]=\sum_{n=0}^{\infty} \frac{\left(\left(a_{p}\right)\right)_{n}}{\left(\left(b_{q}\right)\right)_{n}} \frac{x^{n}}{n!}{ }_{p} F_{q}\left[\left(a_{p}\right)+n ;\left(b_{q}\right)+n ; y\right] \tag{4.2}
\end{equation*}
$$

(which essentially is a consequence of the binomial theorem) where for conciseness

$$
\left(\left(a_{p}\right)\right)_{n} \equiv\left(a_{1}\right)_{n}\left(a_{2}\right)_{n}, \ldots,\left(a_{p}\right)_{n}
$$

which reduces to unity when $p=0$.
It is our intention to show that equation (1.7a) holds true for all dimensions $m \geqslant 1$. Certainly, it holds true for $m=1$ as we have stated in section 1. Therefore, assuming equation (1.7a) is valid for an arbitrary integer m, if we can show that it is valid for $m+1$, then by the principle of mathematical induction it is true for all positive integers m. To this end recall that $W(\boldsymbol{\alpha}(m) ; x)$ is defined by equation (1.1a):
$W(\boldsymbol{\alpha}(m) ; x) \equiv \sum_{\boldsymbol{q}(m)} \exp (2 \pi \mathrm{i} \boldsymbol{\alpha}(m) \cdot \boldsymbol{q}(m))_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} q^{2}(m)\right]$.
For conciseness letting $S(m)=W(\boldsymbol{\alpha}(m) ; x)$ we then have
$S(m+1)=\sum_{\ell \in Z} \mathrm{e}^{2 \pi \mathrm{i} \alpha_{\ell} \ell} \sum_{q(m)} \exp (2 \pi \mathrm{i} \boldsymbol{\alpha} \cdot \boldsymbol{q})_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} q^{2}-x^{2} \ell^{2}\right]$
where α_{ℓ} is an arbitrary ℓ th component of the vector $\boldsymbol{\alpha}(m+1)$, the index ℓ is the ℓ th component of $\boldsymbol{q}(m+1)$, and on the right-hand side of equation (4.3) it is understood that $\boldsymbol{\alpha}=\boldsymbol{\alpha}(m)$, $\boldsymbol{q}=\boldsymbol{q}(m)$. Now employing the addition theorem for generalized hypergeometric functions given by equation (4.2), we see that equation (4.3) yields

$$
\begin{align*}
S(m+1)= & \sum_{\ell \in Z} \mathrm{e}^{2 \pi \mathrm{i} \alpha_{\ell} \ell} \sum_{n=0}^{\infty} \frac{\left(\left(a_{p}\right)\right)_{n}}{\left(\left(b_{p+1}\right)\right)_{n}} \frac{\left(-x^{2} \ell^{2}\right)^{n}}{n!} \\
& \quad \times \sum_{\boldsymbol{q}(m)} \exp (2 \pi \mathrm{i} \boldsymbol{\alpha} \cdot \boldsymbol{q})_{p} F_{p+1}\left[\begin{array}{r}
\left(a_{p}\right)+n ; \\
\left(b_{p+1}\right)+n ;
\end{array},-x^{2} q^{2}\right] \tag{4.4}
\end{align*}
$$

where the order of the second and third summations have been interchanged.
Since obviously the $\boldsymbol{q}(m)$-summation in equation (4.4) is m-dimensional, it may be evaluated by using the induction hypothesis given by equation (1.7a) with (a_{p}) replaced by $\left(a_{p}\right)+n$ and $\left(b_{p+1}\right)$ replaced by $\left(b_{p+1}\right)+n$. Thus we have

$$
\begin{align*}
S(m+1)= & \frac{2 \pi^{-\frac{m}{2}}}{\Gamma\left(\frac{m}{2}\right)} \sum_{\ell \in Z} \mathrm{e}^{2 \pi \mathrm{i} \alpha_{\ell} \ell} \sum_{n=0}^{\infty} \frac{\left(\left(a_{p}\right)\right)_{n}}{\left(\left(b_{p+1}\right)\right)_{n}} \frac{\left(-x^{2} \ell^{2}\right)^{n}}{n!} \\
& \quad \times \sum_{q(m)}^{\xi^{2} \leqslant x^{2} / \pi^{2}} \int_{0}^{\infty} t^{m-1}{ }_{0} F_{1}\left[\begin{array}{r}
- \\
\frac{m}{2} ;
\end{array}-\xi^{2} t^{2}\right]{ }_{p} F_{p+1}\left[\begin{array}{c}
\left(a_{p}\right)+n ; \\
\left(b_{p+1}\right)+n ;
\end{array} \frac{-x^{2} t^{2}}{\pi^{2}}\right] \mathrm{d} t \tag{4.5}
\end{align*}
$$

where $\xi(m)=|\boldsymbol{\alpha}(m)+\boldsymbol{q}(m)|$. Now using the elementary identity

$$
(\alpha+n)_{k}=(\alpha)_{k}(\alpha+k)_{n} /(\alpha)_{n}
$$

the generalized hypergeometric function ${ }_{p} F_{p+1}\left[-x^{2} t^{2} / \pi^{2}\right]$ may be written as
${ }_{p} F_{p+1}\left[\begin{array}{rl}\left(a_{p}\right)+n ; & -x^{2} t^{2} \\ \left(b_{p+1}\right)+n ; & \pi^{2}\end{array}\right]=\frac{\left(\left(b_{p+1}\right)\right)_{n}}{\left(\left(a_{p}\right)\right)_{n}} \sum_{k=0}^{\infty} \frac{\left(\left(a_{p}\right)\right)_{k}}{\left(\left(b_{p+1}\right)\right)_{k}} \frac{\left(\left(a_{p}\right)+k\right)_{n}}{\left(\left(b_{p+1}\right)+k\right)_{n}} \frac{\left(-x^{2} t^{2} / \pi^{2}\right)^{k}}{k!}$
which when inserted into equation (4.5) gives

$$
\begin{align*}
& S(m+1)= \frac{2 \pi^{-\frac{m}{2}}}{\Gamma\left(\frac{m}{2}\right)} \sum_{q(m)}^{\xi^{2} \leqslant x^{2} / \pi^{2}} \int_{0}^{\infty} t^{m-1}{ }_{0} F_{1}\left[-; \frac{m}{2} ;-\xi^{2} t^{2}\right] \sum_{k=0}^{\infty} \frac{\left(\left(a_{p}\right)\right)_{k}}{\left(\left(b_{p+1}\right)\right)_{k}} \frac{\left(-x^{2} t^{2} / \pi^{2}\right)^{k}}{k!} \\
& \quad \times \sum_{\ell \in Z} \mathrm{e}^{2 \pi \mathrm{i} \alpha_{\ell} \ell} \sum_{n=0}^{\infty} \frac{\left(\left(a_{p}\right)+k\right)_{n}}{\left(\left(b_{p+1}\right)+k\right)_{n}} \frac{\left(-x^{2} \ell^{2}\right)^{n}}{n!} \mathrm{d} t \tag{4.6}
\end{align*}
$$

where, in addition to interchanges in the order of integration and ℓ, n-summations, there have occurred interchanges in the orders of the summations themselves.

Next, observing that the n-summation in equation (4.6) is just

$$
{ }_{p} F_{p+1}\left[\left(a_{p}\right)+k ;\left(b_{p+1}\right)+k ;-x^{2} \ell^{2}\right]
$$

we may evaluate the one-dimensional ℓ-summation by again using equation (1.7a) now with $m=1, \alpha=\alpha_{\ell},\left(a_{p}\right)$ replaced by $\left(a_{p}\right)+k$, and $\left(b_{p+1}\right)$ replaced by $\left(b_{p+1}\right)+k$ thus giving

$$
\begin{align*}
\sum_{\ell \in Z} \mathrm{e}^{2 \pi \mathrm{i} \alpha_{\ell} \ell}{ }_{p} & F_{p+1}\left[\left(a_{p}\right)+k ;\left(b_{p+1}\right)+k ;-x^{2} \ell^{2}\right] \\
= & \frac{2}{\pi} \sum_{\ell \in Z}{ }^{\left(\alpha_{\ell}+\ell\right)^{2} \leqslant x^{2} / \pi^{2}} \int_{0}^{\infty}{ }_{0} F_{1}\left[\begin{array}{r}
- \\
\frac{1}{2} ;
\end{array}-\left(\alpha_{\ell}+\ell\right)^{2} s^{2}\right]{ }_{p} F_{p+1} \\
& \times\left[\begin{array}{rr}
\left(a_{p}\right)+k ; & \frac{-x^{2} s^{2}}{\left.n_{p+1}\right)+k ;}
\end{array}\right) \mathrm{d} s \tag{4.7}
\end{align*}
$$

where on the right-hand side we have renamed the one component vector $\boldsymbol{q}(1)$ by again using the scaler index ℓ. Thus equations (4.6) and (4.7) yield

$$
\begin{align*}
S(m+1)= & \frac{4 \pi^{-\frac{m}{2}-1}}{\Gamma\left(\frac{m}{2}\right)} \sum_{\boldsymbol{q}(m)}^{\xi^{2} \leqslant x^{2} / \pi^{2}\left(\alpha_{\ell}+\ell\right)^{2} \leqslant x^{2} / \pi^{2}} \sum_{\ell \in Z}^{\infty} \int_{0}^{\infty} t^{m-1}{ }_{0} F_{1}\left[-; \frac{m}{2} ;-\xi^{2} t^{2}\right] \\
& \times \int_{0}^{\infty}{ }_{0} F_{1}\left[-; \frac{1}{2} ;-\left(\alpha_{\ell}+\ell\right)^{2} s^{2}\right] \sum_{k=0}^{\infty} \frac{\left(\left(a_{p}\right)\right)_{k}}{\left(\left(b_{p+1}\right)\right)_{k}} \frac{\left(-x^{2} t^{2} / \pi^{2}\right)^{k}}{k!} \\
& \times{ }_{p} F_{p+1}\left[\begin{array}{r}
\left(a_{p}\right)+k ; \\
\left(b_{p+1}\right)+k ;
\end{array} \frac{-x^{2} s^{2}}{\pi^{2}}\right] \mathrm{d} s \mathrm{~d} t \tag{4.8}
\end{align*}
$$

where there have occurred changes in the order of s-integration and k-summation along with changes in the order of t-integration and ℓ-summation.

The k-summation in equation (4.8) is simply ${ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ; \frac{-x^{2}}{\pi^{2}}\left(s^{2}+t^{2}\right)\right]$ (cf equation (4.2)) so that the latter result may be written as

$$
\begin{align*}
S(m+1)= & \frac{4 \pi^{-\frac{m}{2}-1}}{\Gamma\left(\frac{m}{2}\right)} \sum_{q(m)}^{\xi^{2} \leqslant x^{2} / \pi^{2}} \sum_{\ell \in Z}^{\left(\alpha_{\ell}+\ell\right)^{2} \leqslant x^{2} / \pi^{2}} \int_{0}^{\infty} \int_{0}^{\infty} t^{m-1}{ }_{0} F_{1}\left[-; \frac{m}{2} ;-\xi^{2} t^{2}\right] \\
& \quad \times_{0} F_{1}\left[-; \frac{1}{2} ;-\left(\alpha_{\ell}+\ell\right)^{2} s^{2}\right]_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ; \frac{-x^{2}}{\pi^{2}}\left(s^{2}+t^{2}\right)\right] \mathrm{d} s \mathrm{~d} t . \tag{4.9}
\end{align*}
$$

Now making the polar coordinate transformation $s=r \cos \phi, t=r \sin \phi$, the double integral in equation (4.9) becomes

$$
\begin{aligned}
& \int_{0}^{\infty} r^{m}{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} r^{2} / \pi^{2}\right] \int_{0}^{\pi / 2} \sin ^{m-1} \phi \\
& \quad \times_{0} F_{1}\left[-; \frac{m}{2} ;-\xi^{2} r^{2} \sin ^{2} \phi\right]{ }_{0} F_{1}\left[-; \frac{1}{2} ;-\left(\alpha_{\ell}+\ell\right)^{2} r^{2} \cos ^{2} \phi\right] \mathrm{d} \phi \mathrm{~d} r .
\end{aligned}
$$

The latter inner integral is evaluated by using equation (4.1) with $\mu=\frac{1}{2}(m-2), a=\left(\alpha_{\ell}+\ell\right) r$, $b=\xi r$ thus giving
$\frac{\sqrt{\pi}}{2} \frac{\Gamma\left(\frac{m}{2}\right)}{\Gamma\left(\frac{m+1}{2}\right)} \int_{0}^{\infty} r^{m}{ }_{0} F_{1}\left[-; \frac{m+1}{2} ;-\left(\xi^{2}+\left(\alpha_{\ell}+\ell\right)^{2}\right) r^{2}\right]{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ; \frac{-x^{2} r^{2}}{\pi^{2}}\right] \mathrm{d} r$
where $\xi=\xi(m)$.

Since $S(m+1)=W(\boldsymbol{\alpha}(m+1) ; x)$, letting $\xi^{2}(m+1)=\xi^{2}(m)+\left(\alpha_{\ell}+\ell\right)^{2}$ we may then write equation (4.9) as
$W(\boldsymbol{\alpha}(m+1) ; x)=\frac{2 \pi^{-\frac{m+1}{2}}}{\Gamma\left(\frac{m+1}{2}\right)} \sum_{q(m+1)}^{\xi^{2} \leqslant x^{2} / \pi^{2}} \int_{0}^{\infty} r^{m}{ }_{0} F_{1}\left[\begin{array}{c}- \\ \frac{m+1}{2} ;\end{array}-\xi^{2} r^{2}\right]{ }_{p} F_{p+1}\left[\begin{array}{c}\left(a_{p}\right) ;-x^{2} r^{2} \\ \left(b_{p+1}\right) ;\end{array} \pi^{2}\right] \mathrm{d} r$
where $\xi=\xi(m+1)$. Using once again [4, equations (4.4), (5.1)] the latter integral converges when $\xi^{2}<x^{2} / \pi^{2}$ provided that

$$
\operatorname{Re}\left(a_{k}\right)>\frac{1}{4} m \quad \operatorname{Re}(\Delta)>\frac{1}{2}(m+1)
$$

and when $\xi^{2} \leqslant x^{2} / \pi^{2}$ provided that

$$
\operatorname{Re}\left(a_{k}\right)>\frac{1}{4} m \quad \operatorname{Re}(\Delta)>\frac{1}{2}(m+3)
$$

where Δ is given by equation (1.2) and $1 \leqslant k \leqslant p$. Thus we have reproduced above equations (1.7) with m replaced by $m+1$. This evidently completes the inductive proof of equations (1.7).

5. Null-functions

Recall that the vector $\boldsymbol{\xi}(m)$ is defined by

$$
\boldsymbol{\xi}(m)=\boldsymbol{\alpha}(m)+\boldsymbol{q}(m)
$$

where the m components of $\boldsymbol{\alpha}(m)$ are arbitrary real numbers and the m components of $\boldsymbol{q}(m)$ are integers in Z. If we let r be a positive integer greater than one, $q_{i} \in Z(1 \leqslant i \leqslant m)$, and set

$$
\begin{align*}
\boldsymbol{\alpha}(m) & =\left(\frac{1}{r}, \frac{1}{r}, \ldots, \frac{1}{r}\right) \tag{5.1}\\
\boldsymbol{q}(m) & =\left(q_{1}, q_{2}, \ldots, q_{m}\right)
\end{align*}
$$

then

$$
\xi^{2}=\frac{1}{r^{2}}\left[\left(1+r q_{1}\right)^{2}+\left(1+r q_{2}\right)^{2}+\cdots+\left(1+r q_{m}\right)^{2}\right]
$$

where $\xi=\xi(m)$ is the length of $\boldsymbol{\xi}(m)$.
Now if x is the interval $0<x<\pi \sqrt{m} / r$, such that $\xi^{2}<x^{2} / \pi^{2}$, then we have

$$
\begin{equation*}
\left(1+r q_{1}\right)^{2}+\left(1+r q_{2}\right)^{2}+\cdots+\left(1+r q_{m}\right)^{2}<m \tag{5.2}
\end{equation*}
$$

Furthermore, since none of the components of $\boldsymbol{\alpha}(m)$ given by equation (5.1) is an integer and $\xi^{2}<x^{2} / \pi^{2}$, from lemma $1(\mathrm{i})$ the sum $W(\boldsymbol{\alpha} ; x)$ exists provided that for $1 \leqslant k \leqslant p$

$$
\begin{equation*}
\operatorname{Re}\left(a_{k}\right)>\frac{1}{4}(m-1) \quad \operatorname{Re}(\Delta)>\frac{1}{2} m \tag{5.3}
\end{equation*}
$$

where Δ is given by equation (1.2). However, because the finite sums on the right-hand sides of either equations (1.6) or (1.7a) are empty (since the inequality (5.2) can never be satisfied), it is evident that $W(\boldsymbol{\alpha} ; x)=0$. Thus observing that $\alpha^{2}=m / r^{2}$ we have the following corollary.
Corollary 1. Suppose for positive integer r greater than one that $\boldsymbol{\alpha}(m)$ is given by equation (5.1). Then

$$
\begin{equation*}
\sum_{\boldsymbol{q}(m)} \cos (2 \pi \boldsymbol{\alpha} \cdot \boldsymbol{q})_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} q^{2}\right]=0 \tag{5.4}
\end{equation*}
$$

for all x is the open interval $(0, \pi \alpha)$ provided that the conditional inequalities (5.3) hold true.
Thus for fixed integer $r>1$ equation (5.4) provides a countably infinite number of representations for null-functions on increasingly larger open intervals. Perhaps more remarkable is the fact that these null-functions $W(\boldsymbol{\alpha} ; x)$ are parametrically independent of the choice of generalized hypergeometric functions generating them.

References

[1] Allen S and Pathria R K 1993 Analytical evaluation of a class of phase-modulated lattice sums J. Math. Phys. 34 1497-507
[2] Allen S and Pathria R K 1993 On the conjectures of Henkel and Weston J. Phys. A: Math. Gen. 26 5173-6
[3] Miller A R 2000 Lattice sums of generalized hypergeometric functions J. Phys. A: Math. Gen. 33 3325-34
[4] Miller A R 1997 On the Mellin transform of products of Bessel and generalized hypergeometric functions J. Comput. Appl. Math. 85 271-86
[5] Miller A R 1995 m-dimensional Schlömilch series Can. Math. Bull. 38 347-51
[6] Prudnikov A P, Brychkov Yu A and Marichev O I 1990 Integrals and Series vol 2-3 (New York: Gordon and Breach)
[7] Whittaker E T and Watson G N 1927 A Course of Modern Analysis 4th edn (Cambridge: Cambridge University Press)
[8] Zemanian A H 1965 Distribution Theory and Transform Analysis (New York: Dover)

